无线电爱好网

 找回密码
 注册

QQ登录

只需一步,快速开始

扫一扫,访问微社区

如何消除反激式转换器于启动期间MOSFET之过应力

2024-3-19 09:32| 发布者: 闪电| 查看: 4| 评论: 0

摘要: 本应用文件从三大方向探讨“如何有效消除反激式转换器于启动期间MOSFET之过应力”:从RICHTEK内嵌软启动功能之反激式转换控制器设计,再到系统回路稳定度与开关管之应力关系,最后带入被动式电压箝位RCD缓冲电路分析 ...


设计不同的回路稳定度进行补偿实验,探讨回路稳定度与开关管之应力关系,可与理论形成相互佐证的关系。为了测量不同的回路增益特性对开关管所受应力的影响,我们在同一个反激式转换器电源系统上分别设定“ fC< 800 Hz &ψ< 45°”和“fC> 800 Hz &ψ> 45°”的回路增益特性并测量开关管之应力。图九及图十分别为低压及高压输入、满载时回路增益之交越频率与相位余裕实验测量曲线,图十一为高压输入、满载时开关管之应力状况。经过比较可知:当交越频率较低且相位余裕不足时,瞬时响应速度缓慢,输出电压建立过程存在过冲(Overshoot),根据公式(4),存在过冲的输出电压将使开关管之应力增加。所以,适当设计的回路增益交越频率和足够的相位余裕,可以有效降低反激式转换器在启动期间施加在开关管上的应力,对避免开关管损坏有极好的帮助。

Technical Document Image Preview

图九、低压输入满载时回路增益之交越频率与相位余裕

Technical Document Image Preview

图十、高压输入、满载时回路增益之交越频率与相位余裕

Technical Document Image Preview

图十一、反激式转换器在高压输入、满载时对开关管之应力



被动式电压箝位RCD缓冲电路分析及设计

反激式转换器的变压器存在漏电感,开关管存在寄生电容,如图十二:反激式转换器及其组件等效电路模型所示。由于电感的磁通必需连续,当开关管关闭(Turn OFF)时,变压器之漏电感电流瞬间被截断,储存于漏电感之磁通无法被转换至变压器二次侧,此能量将在变压器之漏电感与开关管寄生电容间共振产生高频振荡,开关管之漏极(Drain)与源极(Source)间(VDS)将形成一极高之电压尖峰(Voltage Spike),如图十三所示。图十三(a) 为反激式转换器工作于连续导通模式(Continuous-Conduction-Mode,CCM)的波形;图十三(b) 为反激式转换器工作于不连续导通模式(Discontinuous-Conduction-Mode,DCM)的波形。

该高频振荡迭加于开关管之漏极与源极间,迭加后的电压尖峰峰值的计算公式为:

Technical Document Image Preview

其中iDS_Peak为流经变压器一次侧的开关管峰值电流;LLK为变压器一次侧等效之漏电感;CP为变压器一次侧等效之寄生电容;Vin为输入电压;n为变压器匝数比;VO为输出电压;VF为功率二极管导通电压。

Technical Document Image Preview

图十二、反激式转换器及其组件等效电路模型

Technical Document Image Preview

图十三、反激式转换器组件寄生之漏电感与电容共振波形


由上述组件之寄生电感及电容所产生之电压尖峰及伴随之高频振荡,将对开关管造成应力冲击甚至可能将其损坏,也可能衍生出电源系统之电磁干扰或和电路操作之可靠度问题。适当的缓冲电路(Snubber)可对此高频振荡进行抑制,并对上述问题作有效之改善。

本应用文件介绍目前广泛应用于反激式转换器之被动式电压箝位RCD缓冲电路,如图十四所示。在开关管关断瞬间,变压器的漏电感电流依原初始方向继续流动,它将分成两路:一路(iDS)在逐渐关断的开关管继续流动;另一路(iSn)经由缓冲电路的二极管(DSn)向电容(CSn)充电。由于CSn上的电压不能突然改变,因而降低了开关管关断电压上升的速率,并把开关管的关断功率损耗转移到了缓冲电路,如图十五:被动式电压箝位RCD缓冲电路电压/电流波形所示。

Technical Document Image Preview

图十四、附加被动式电压箝位RCD缓冲电路之反激式转换器

Technical Document Image Preview

图十五、被动式电压箝位RCD缓冲电路电压/电流波形 (DCM)

开关管关断瞬间,缓冲电路的二极管导通,变压器的漏电感电流上升斜率(mi_Sn):

Technical Document Image Preview

其中iSn为缓冲电路流经二极管电流。

缓冲电路的二极管导通时间(tSn):

Technical Document Image Preview

反激式转换器峰值电流(iDS_Peak)依工作模式不同分为:

工作于不连续导通模式(DCM)的开关管峰值电流(iDS_Peak_DCM):

Technical Document Image Preview

工作于连续导通模式(CCM)的开关管峰值电流(iDS_Peak_CCM):

Technical Document Image Preview

其中Pin为反激式转换器输入功率。

缓冲电路之功率损耗(PSn):

Technical Document Image Preview

其中电容电压(VSn)一般设计为n(Vo+ VF) 的2~2.5倍。

将公式(10)换算至电功率公式可知缓冲电路之电阻(RSn):

Technical Document Image Preview

缓冲电路之电容(CSn)的电压纹波(DVSn)一般设计为电容电压(VSn) 的5~10%。依照伏秒平衡(Volt-Second Balance)之观念,可推导得出缓冲电路之电容(CSn)设计值:

Technical Document Image Preview

反激式转换器开关管之漏极与源极间的最高电压一般发生于系统工作于最高输入电压并且满载的情况,因此,反激式转换器之被动式电压箝位RCD缓冲电路应以此条件作为电容及电阻的设计依据,而二极管一般应选用快恢复二极管。一个实际的反激式转换器电源系统的开关管所受应力在加入被动式电压箝位RCD缓冲电路前后的对比见图十六,我们可从中看到明显的区别。通过上面的分析和实践,我们可以确信被动式电压箝位RCD缓冲电路设计可有效降低开关管所受应力以避免开关管之损坏,从而提高电路操作之可靠度,也可同时改善高频振荡衍生之电磁干扰问题。

Technical Document Image Preview

图十六、被动式电压箝位RCD缓冲电路加入前后之开关管应力比较



总结

开关组件Power MOSFET扮演着开关式电源转换器的重要角色。反激式转换器(Flyback Converter)拥有初/次级隔离、电路架构简单、零件数少、成本低等特色,因而被广泛应用。反激式转换器开关管(MOSFET)之最大应力不一定发生于满载稳态操作期间,更值得被探讨的可能是“启动期间”。本应用文件从理论阐述及实验佐证全方位、多角度探讨“如何有效消除反激式转换器于启动期间MOSFET之过应力”,从反激式转换器系统的核心——反激式转换器控制器IC的软启动功能,到系统层面的回路稳定度补偿,最后提供应用电路——被动式电压箝位RCD缓冲电路的分析及设计方法。这些理论和方法可供研发工程师在进行反激式转换器电源系统的开发设计时参考,以便降低开关管所受之应力,避免开关管之损坏,提高电路操作之可靠度。


12

路过

雷人

握手

鲜花

鸡蛋

QQ|关于本站|小黑屋|Archiver|手机版|无线电爱好网 ( 粤ICP备15040352号 ) 无线电爱好技术交流5 无线电爱好技术交流1无线电爱好技术交流9开关电源讨论群LED照明应用、电源无线电爱好技术交流4无线电爱好技术交流8无线电爱好技术交流10无线电爱好技术交流11

粤公网安备 44030702001224号

GMT+8, 2024-3-19 09:32 , Processed in 0.124800 second(s), 17 queries .

Powered by Discuz! X3.4 Licensed

Copyright © 2001-2020, Tencent Cloud.

返回顶部