本小节分析了不同栅极环路电感(LG)对SiC MOSFET 开关特性的影响。在与表 10 相同的测试条件下,对 NVXR17S90M2SPC 模块进行了双脉冲测试,测试条件如下。
图 12 显示了 SiC MOSFET 导通期间,栅极环路测试不同设置下的波形比较,表 13 对其特性进行了总结。与 IGBT 的情况一样,较长的栅极环路测试条件下,较快的 di/dt 导致较低的 Eon 和较高的 VSD_peak峰值电压。 图 12. SiC MOSFET导通波形与栅极环路电感(LG)的关系 表 13. 总结:SiC MOSFET 导通特性与栅极环路电感 图13展示了在SiC MOSFET关断期间,不同栅极环路电感设置下的波形对比。总结出的特性如表14中所述。在测试时,若使用较高的栅极环路电感,即使VDS过冲电压增大,也会反应出较快的di/dt及较低的Eoff。关断后,可作为电磁干扰(EMI)噪声源的ID振荡幅度取决于栅极环路的长度。 图 13. SiC MOSFET关断波形与栅极环路电感(LG)的关系 表 14. 总结:SiC MOSFET关断特性与栅极环路电感 在本应用笔记中分析了电感对IGBT和SiC MOSFET模块开关特性的影响。较高的直流链路环路电感设置会在Eoff和Err较高时导致较低的Eon。此外,结果显示,在23nH和37nH测试设置之间的总开关损耗差距小于2mJ。这可能会让人误认为杂散电感对开关损耗影响不大。然而,为了符合RBSOA和EMC的要求,调整外部栅极电阻(RG)或其他系统参数很有必要,尽管这样做会牺牲 di/dt 的可控性并且增加开关损耗。图14和图15展示了在优化外部RG前后,直流链路环路电感条件下IGBT和SiC的开关损耗情况。在优化外部RG之前,采用较高的直流链路环路电感设置,总开关损耗相似,但在针对系统性能优化外部RG之后,当直流链路环路电感从23nH变为37nH时,IGBT和SiC案例中的总损耗分别增加了20%和92%。 图 14. IGBT 总损耗比较 图 15. SiC MOSFET 总开关损耗比较 较高的栅极环路电感设置在米勒平台效应后,通过电感效应带来稍快的导通瞬态。从开关损耗的角度来看,其影响比直流链路环路电感要小一些。由于不希望出现栅极过冲现象,较高的栅极环路电感会导致栅极控制能力降低。从短路情况来看,这种电感会拉高栅极电压,因此,通过增加栅极电压可以缩短短路耐受时间。此外,较长的栅极环路可以充当天线,电磁噪声抗干扰能力差,并且可能对其他电路产生干扰。 IGBT 开关损耗与栅极环路电感的关系 总之,最小化直流链路和栅极环路电感对于IGBT/SiC的开关应用是必要的,在满足可控性和电磁兼容性的同时获得更低的开关损耗。 |