图12. 过载时潜在失效模式的简化波形 图10和图11给出了过载时功率MOSFET开关波形。电流尖峰发生在开通和关断的瞬间。可以被认作是一种“暂时直通”。图12给出了过载时LLC谐振变换器的简化波形,图13给出了可能导致器件潜在失效问题的工作模式。 在t0~t1时段,Q1导通,谐振电感电流Ir为正。由于MOSFET Q1处于导通状态,谐振电流流过MOSFET Q1沟道,次级二极管D1导通。Lm不参与谐振,Cr与Lr谐振。能量由输入端传送到输出端。 在t1~t2时段,Q1门极驱动信号开通,Q2关断,输出电流在t1时刻为零。两个电感电流Ir和Im相等。次级二极管都不导通,两个输出二极管反向偏置。能量从输出电容而不是输入端往外传输。因为输出端与变压器隔离,Lm与Lr串联参与谐振。 在t2~t3时段,MOSFET Q1依然施加门极信号,Q2关断。在这个时段内,谐振电感电流方向改变。电流从MOSFET Q2的源极流向漏极。D2开始导通,D1反向偏置,输出电流开始增加。能量回流到输入端。 在t3~t4时段,关断MOSFET Q1和Q2的门极信号,谐振电感电流开始流过MOSFET Q2的体二极管,这就为MOSFET Q1创造了ZCS条件。 在t4~t5时段,MOSFET Q2开通,流过一个很大的直通电流,该电流由MOSFET Q1体二极管的反向恢复电流产生。这不是偶然的直通,因为高、低端MOSFET正常施加了门极信号;有如直通电流一样,它会影响到该开关电源。这会形成很高的反向恢复dv/dt,时常会击穿MOSFET Q2。这样就会导致MOSFET失效,当使用的MOSFET体二极管的反向恢复特性较差时,这种失效机理会更加严重。 (a) t1-t2 (b) t1-t2 (c) t2-t3 (d) t3-t4 (e) t4-t5 图13. 过载时LLC谐振半桥变换器的潜在失效工作模式 最坏情况为短路。短路时,MOSFET导通电流非常高 (理论上无限高),频率也会降低。当发生短路时,谐 振回路中Lm被旁路。LLC谐振变换器可以简化为由Cr和 Lr组成的谐振电路,因为Cr只与Lr发生谐振。因此图12 省略了t1~t2时段,短路时次级二极管在CCM模式下连续 导通。短路状态下工作模式几乎与过载状态下一样,但 是短路状态更糟糕,因为流经开关体二极管的反向恢复 电流更大。 图14. 短路时功率MOSFET的测量波形 图15. 短路时功率MOSFET的仿真波形 图14和图15给出了短路时功率MOSFET的开关波形。短路的波形与过载下的波形类似,但是其电流的等级更高,MOSFET结温度更高,更容易失效。 |