在t2~t3时段,MOSFET Q2施加门极信号,在t0~t1时段剧增的谐振电流流经MOSFET Q2沟道。由于二极管D1依然导通,该时段内谐振电感的电压为: 。该电压使得谐振电流ir(t)下降。然而, 很小,并不足以在这个时间段内使电流反向。在t3时刻,MOSFET Q2电流依然从源极流向漏极。另外,MOSFET Q2的体二极管不会恢复,因为漏源极之间没有反向电压。下式给出了谐振电感电流Ir的上升斜率:
(公式4)
在t3~t4时段,谐振电感电流经MOSFET Q2体二极管续流。尽管电流不大,但依然给MOSFET Q2的P-N结增加储存电荷。在t4~t5时段,MOSFET Q1通道导通,流过非常大的直通电流,该电流由MOSFET Q2体二极管的反向恢复电流引起。这不是偶然的直通,因为高、低端MOSFET正常施加了门极信号;如同直通电流一样,它会影响到该开关电源。这会产生很大的反向恢复dv/dt,有时会击穿MOSFET Q2。这样就会导致MOSFET失效,并且当采用的MOSFET体二极管的反向恢复特性较差时,这种失效机理将会更加严重。

(a) t0-t1

(b) t1-t2
(c) t2-t3

(d) t3-t4

(e) t4-t5 图6. LLC谐振半桥变换器的潜在失效工作模式
图7给出了不同负载下LLC谐振变换器的直流增益特性曲线。根据不同的工作频率和负载可以分为三个区域。谐振频率fr1的右侧(蓝框)表示ZVS区域,空载时最小第二谐振频率fr2的左侧(红框)表示ZCS区域,fr1和fr2之间的可能是ZVS或者ZCS,由负载状况决定。所以紫色的区域表示感性负载,粉色的区域表示容性负载。图8给出了感性和容性负载下简化波形。当开关频率fsr2,谐振电路的输入阻抗为容性。因此,谐振电路电流超前于MOSFET两端电压的基波量;MOSFET电流在其开通后为正,在其关断前为负。

图8. 容性负载(a)和感性负载(b)时的简化波形
MOSFET在零电流处关断。在MOSFET开通前,电流流过另一个MOSFET的体二极管。当MOSFET开关开通,另一个MOSFET体二极管的反向恢复应力很大。由于大反向恢复电流尖峰不能够流过谐振电路,它将流过另一个MOSFET。这就会产生很大的开关损耗,并且电流和电压尖峰能够造成器件失效。因此,变换器需要避免工作在这个区域。
对于开关频率fs>fr1,谐振电路的输入阻抗为感性。MOSFET电流在开通后为负,关断前为正。MOSFET开关在零电压处开通。因此,不会出现米勒效应从而使开通损耗最小化。
MOSFET的输入电容不会因米勒效应而增加。而且体二极管的反向恢复电流是正弦波形的一部分,并且当开关电流为正时,会成为开关电流的一部分。因此,通常ZVS优于ZCS,因为它可以消除由反向恢复电流、结电容放电引起的主要的开关损耗和应力。
图9给出了过载情况下工作点移动轨迹。变换器正常工作在ZVS区域,但过载时,工作点移动到ZCS区域,并且串联谐振变换器特性成为主导。过载情况下,开关电流增加,ZVS消失,Lm被反射负载RLOAD完全短路。
这种情况通常会导致变换器工作在ZCS区域。ZCS(谐振点以下)最严重的缺点是:开通时为硬开关,从而导致二极管反向恢复应力。此外,还会增加开通损耗,产生噪声或EMI。

图9. 依赖负载条件LLC谐振变换器的工作点
二极管关断伴随非常大的dv/dt,因此在很大的di/dt条件 下,会产生很高的反向恢复电流尖峰。这些尖峰会比稳态开关电流幅值大十倍以上。该大电流会使MOSFET损耗大大增加、发热严重。MOSFET结温的升高会降低其dv/dt的能力。在极端情况下,损坏MOSFET,使整个系统失效。在特殊应用中,负载会从空载突变到过载,为了能够保持系统可靠性,系统应该能够在更恶劣的工作环境中运行。

图10. 过载时功率MOSFET的测量波形

图11. 过载时功率MOSFET的仿真波形
|