在众多谐振转换器中,LLC 谐振转换器有着高功率密度应用中最常用的拓扑结构。与其他谐振拓扑相比,这种拓扑具有许多优点:它能以相对较小的开关频率变化来调节整个负载变化的输出;它可以实现初级侧开关的零电压开关 (ZVS) 和次级侧整流器的零电流开关 (ZCS);而且,谐振电感可以集成到变压器中。NCP4390 系列是一种先进的脉冲频率调制 (PFM) 控制器系列,适用于具有同步整流 (SR) 的 LLC 谐振转换器,可为隔离式 DC/DC 转换器提供出众的效率。与市场上的传统 PFM 控制器相比,NCP4390 具有几项独特的功能,可以最大限度地提高效率、可靠性和性能。电荷−电流控制:LLC 谐振转换器通常采用电压模式控制,其中误差放大器输出电压直接控制着开关频率。然而,LLC 谐振转换器的补偿网络设计相对具有一定挑战性,这是因为采用电压模式控制的 LLC 谐振转换器有着非常复杂的特性:它有四个图腾柱,而图腾柱的位置会随着输入电压和负载条件而变化。NCP4390 采用了基于每个开关周期电荷数量的电流模式控制技术,该技术提供了更好的功率级“控制到输出”传递函数,简化了反馈环路设计,同时实现了真正的输入功率限制和内在的线路前馈。 双边沿跟踪同步整流 (SR) 控制:NCP4390 使用了一种双边沿跟踪方法,可以预测两个不同时间参考的 SR 电流过零瞬间。该技术不仅最大程度缩短了正常操作期间的死区时间,而且在任何瞬态和模式变化期间也提供了稳定的 SR 控制。

本文介绍了采用 NCP4390 的半桥 LLC 谐振转换器的设计注意事项。其中包括有关 LLC 谐振转换器工作原理的说明、变压器和谐振网络的设计,以及元件的选择。后续我们将通过分步设计程序配有设计示例来加以说明,帮助您完成 LLC 谐振转换器的设计。
图 2 显示了半桥 LLC 谐振转换器的简化电路图,其中 Lm 是充当并联电感的励磁电感,Lr 是串联谐振电感,而 Cr 是谐振电容。
图 3 说明了 LLC 谐振转换器的典型波形。我们假设工作频率与谐振频率相同,即由 Lr 和 Cr 之间的谐振确定。由于励磁电感相对较小,因此会存在较大的励磁电流 (Im),该电流将在初级侧自由流动,不涉及功率传输。初级侧电流 (Ip) 是指初级侧的励磁电流与次级侧电流 (ID) 的总和。
一般来说,LLC 谐振拓扑是由图 2 所示的三个级组成的:方波发生器、 谐振网络以及整流器网络。
方波发生器通过交替驱动开关 Q1 和 Q2 而产生方波电压 Vd,且每个开关的占空比均为 50%。控制器则通常在连续转换之间引入短的死区时间。方波发生器可以是全桥式或半桥式。全桥方波发生器产生的方波振幅是半桥方波的两倍。 谐振网络由电容、泄漏电感和变压器的励磁电感组成。谐振网络将对高次谐波电流进行滤波。实际上,即使方波电压施加到谐振网络上,也只有正弦电流通过谐振网络。电流 (Ip ) 会滞后于施加到谐振网络上的电压(即,施加到半桥图腾柱上的方波电压 (Vd) 的基本分量),这样即允许 MOSFET 以零漏极-源极电压导通。如图 3 所示,由于电流流过反向并联二极管,因此 MOSFET 导通,而 MOSFET 两端的电压为零。 整流器网络通过整流二极管对交流电流进行整流,以产生直流电压。整流器网络可以是全波桥式整流,或者采用带电容输出滤波器的中心抽头配置。


图 3:半桥 LLC 谐振转换器典型波形
|