汽车工业日新月异。当下只能依靠内燃机完成的任务,未来将实现通过混合动力、电动甚至燃料电池驱动的车辆来处理。过去,许多厂商重视传统内燃机和传动系统必要的机械部件,而今后,关注点将转向其它组件。他们可能开发新型固态电池,以增加续航里程以及充放电次数,这是当前锂电池无法达到的,也可能着重开发高性能充电器、DC/DC 转换器和电机。 作为核心组件,电池管理系统 (BMS) 负责电池的正确管理和监测。目前,电动汽车采用锂离子电池。这些电池连接在一起使电池组达到所需总电压。现有单体电池电压约为 3.6V 至 3.7V,动力电池 520V或 900V 高压系统需要约 140 至 250 节电池。这种配置中,必须监测电池的温度、阻抗(电池内阻)、电压以及充放电电流。 通常,NTC 热敏电阻紧贴电池或模块壁,或电气接点连接测量其温度。随着热敏电阻温度上升,阻值下降,灵敏度提高(由于电阻负温度系数大)。温度可使用芯片集成的模/数转换器 (ADC),通过测量电阻-热敏电阻网络电压来确定。 准确的温度读数对于电池的正常功能和系统的安全极为重要。NTC 和测量电路电阻关系到温度测量精度。 BMS功能二:均衡 BMS 的另一项核心任务是平衡每块电池。生产过程中,每块电池的容量和内阻因加工工艺不同会产生偏差。因此,电池组充电或放电不均匀。为了充分使用电池的全部能量(续航能力),需要平衡每块电池的容量和电压。电荷平衡的基本原理有两种:主动均衡和被动均衡。 1.主动均衡 主动均衡时,电池多余能量在场效应晶体管的开通时通过电路转移到线圈中。在关断时,线圈中的能量通过二极管传送到下一块电池。这种方法持续进行,直到所有电池达到满充电电压(图5)。 ![]() 2.被动均衡 被动均衡采用泄放电阻将电池的多余能量转化为热量。芯片测量电池充电时每块电池的电压,达到阈值后随即接通电阻器。这个过程可以同时发生在一块或多块电池上(图6)。这种方法使用的电阻器通常采用厚膜技术加工。它们具有较高的温度系数和较高的初始公差。 ![]() Vishay 提供了显著不同的方法。与传统厚膜电阻器相比,双涂层 CRCW-HP 电阻器和经过特殊修整的 RCS 电阻器在相同占位面积下,连续功率可提高两倍至三倍。另外,在功率要求相同的情况下,使用这些系列电阻可减少所需印刷电路板空间,同时节省成本。 另一种可以产生同样效果的是 RCL系列电阻,这种宽端子电阻可提高连续功率,具有更好的热循环性能。汽车工业要求 -55 °C至 +125 °C 温度范围内以及增加循环的情况下,组件与印刷电路板之间可靠焊接,这些条件构成选择合适组件的另一个标准。 由于主动均衡电路成本高,每块电池内阻和电容制造公差较窄,汽车领域主要采用被动均衡。 1.功能安全(ISO 26262, ASIL-D) 这种情况下,监测电池电压是非常关键的参数之一,因为每块电池过充电或深度放电会造成内部短路,导致电池下次充电时热击穿。 冗余电池电压测量可使用两个电池芯片进行。这种方法的缺点是,电压测量需使用相同的方法,同时,使用的解决方案成本高。 另一种解决方案是使用泄放均衡电阻以模拟方式测量电池电压,将其与芯片的电池电压测量结果进行比较。这是一种经济高效的独立测量方法。上述厚膜泄漏电阻不适于这种测量。相反,应使用薄膜电阻,因为即使在苛刻的使用条件下,薄膜电阻也能保证整个使用寿命周期精确的测量。 Vishay 同样为此提供了多种选择。首先是采用特殊薄膜技术生产的MC-HP系列电阻器。其优点是长期稳定(≤ 0.2 %; P70, 1000小时),性能是标准薄膜电阻器的两倍。其次是采用薄膜技术的宽端子 MCW 系列电阻器(外形尺寸 0406 和 0612)。 该系列满足长期稳定性 (≤ 0.2 %; P70, 1000小时)、连续功率空间比要求,几乎相同的连续功率只需三分之一常规空间(图7),提高了热循环性能(3000 次循环)。凭借这些特性,该系列电阻适合用作 BMS 的泄漏电阻,或电池电压测量电阻,满足 ASIL-D 未来整个系统的要求。 由于每个组件的性能、所需空间、估计的使用寿命和参数漂移的要求越来越高,安全规定越来越严格,如果对于整个系统设计没有深入了解,就无法选择组件,尤其是电动传动系统组件。在这方面,Vishay 提供了许多极具差异化的产品和解决方案,有助于整个系统高效安全的设计。 |