无线电爱好网

 找回密码
 注册

QQ登录

只需一步,快速开始

用百度帐号登录

只需两步,快速登录

使用新浪微博登录

一号多站,快速登录

人人连接登陆

无需注册,直接登录

搜索
欢迎光临无线电爱好网  www.86x.net 捍卫钓鱼岛 抵制日货
无线电爱好网 欢迎广大电子爱好者和无线电爱好者 建立自己的专业群组!最
无线电爱好网开通网络电视功能插件,有些浏览器不能正常观看,推荐使用 360极速浏览器 36
手机天线原理和设计 4411
移动通信基站基础知识 4410
周海婴被公众提及最多的一个身份是“鲁迅独子”,其实他并没有走父亲的文学之路,而是在无线电
火腿入门必读 注:资料来自网络,原作者不详 第
.李建清.扫描版3730 3731
.李建清.扫描版 3728 3729
功率放大模块.型号 频率 功率 注:资料来自网络
本帖最后由 lfcx 于 2012-8-11 15:48 编辑 http://www.86x.net/data/attachment/portal/201208/11/085633h
.李建清.扫描版.pdf 3745 3746
.刘建清.扫描版 3736 3737
基于微盟ME8204 应用 12V-2A 开关电源应用方案(原理图,PCB 下载条件
本方案使用微盟 me8204 IC 4
六级能效标准的挑战 资源:115网盘附件下
 路灯电缆故障测试仪,实际上可以由便携式测距
ARM体系结构(1).pdf 4058
嵌入式系统设计师考试笔记(完整整理版).pdf 4057
求led点阵时钟程序,急!
买仪器就到我爱仪器网,那里更全,服务更好
本帖最后由 lfcx 于 2012-1-25 18:04 编辑 资源:115
本帖最后由 lfcx 于 2012-1-6 16:31 编辑 资源:115网盘附件下载:第11讲.rar (1
资源:115网盘附件下载:MCS-51单片机原理及接口技术.rar (5.51MB)
资源:115网盘附件下载:8098单片机原理与应用.rar (4
资源:115网盘附件下载:keil+uvision4破解版下
资源:115网盘附件下载:Proteus-自建元件库.doc (563.00KB) 《单片机模拟仿真软件》Proteus7.5sp3破解汉化
μCOS-Ⅱ Mega128 源代码
Linux基础教程!!
综合台湾媒体报道,台空军屏东联队第20电子战大队破获共谍案,少校郝志雄涉嫌被大陆收
本帖最后由 lfcx 于 2012-3-23 21:22 编辑 资源:115网盘附件下载:EMC
资源:115网盘附件下载:EMC设计整改指导
这里将免费提供场地,收录国内

基于AP3766高功率因数非隔离的LED驱动电路

2012-8-21 16:00| 发布者: lfcx| 查看: 1082| 评论: 0

摘要: 引言LED照明作为一种新兴产业技术,正在不断开拓更广泛的应用。对于交流电源输入应用,目前通常使用基于反激式(flyback)拓扑结构开关电源。反激式(flyback)拓扑结构开关电源包括输入整流滤波电路,开关控制电路 ...

引言

LED照明作为一种新兴产业技术,正在不断开拓更广泛的应用。对于交流电源输入应用,目前通常使用基于反激式(flyback)拓扑结构开关电源。反激式(flyback)拓扑结构开关电源包括输入整流滤波电路,开关控制电路,隔离变压器和副边整流滤波电路。然而,反激式电源电路效率不高,并且,有些LED照明应用不一定需要隔离,因此,开发低成本高性价比的非隔离LED驱动电路是十分必要的。

IEC国际电工委员会对照明灯具提出了明确的谐波要求,即IEC61000-3-2标准。同时,最新的能源之星(EnergyStar)标准提出对于大于5W的LED照明产品,要求功率因数指标,即PF,必须大于0.7。

本文提出了一种新的高功率因数非隔离LED驱动电路,组合了逐流式功率因数校正电路和采用原边控制的Buck-boost开关电源电路,电路结构简单,同时满足LED驱动电源的高功率因数,高效率,符合电磁兼容EMC标准,高电流控制精度,高可靠性、体积小、成本低等一系列要求。

AP3766简介

AP3766是BCD公司最新推出的LED专用驱动控制芯片,采用原边调整控制(PSR)技术实现高精度的恒压/恒流(CV/CC)输出,省去了副边光耦及恒压恒流控制电路,也不需要环路补偿电路实现了电路的稳定控制,并且采用SOT-23-6小体积封装,显著缩小系统体积,降低了系统成本。AP3766具有"亚微安启动电流"专利技术,降低了系统功耗,提升了效率。能够使得效率大于80%,空载功耗小于30mW。AP3766内置外部元件温度变化补偿及恒流CC收紧技术实现垂直的CC特性,保证了量产情况下±5%的输出恒流精度。同时,AP3766内置软启动,过压保护,短路保护功能,提高了系统可靠性。

AP3766具有很强的系统适应性,能够搭配无源PFC逐流式电路,输出图腾柱驱动电路等外围线路满足高功率因数要求和更大功率输出。因此,AP3766不仅可以应用于GU10射灯,E27泡灯,也可以应用于PAR灯,直管灯等。

图1为AP3766的管脚图。


图1.AP3766的管脚图


非隔离方案系统规格要求

LED的光效正在不断向更高的指标前进,目前提高光效的一种措施是用多颗小电流的LED晶粒串联组成高压小电流的LED封装结构,这样的结构不仅提高了LED的光效,也有利于提升开关电源的整体效率。然而,由于LED工作电压比较高,传统的隔离反激式开关电源不再适用,因为要达到很高的输出电压,反激式开关电源的隔离变压器输出绕组需要比较多的匝数,变压器体积将大大增加,原副边之间的耦合将下降,电路效率也将下降。针对高压小电流输出和高效率的系统规格要求,本文提出一种全新的Buck-boost开关电源电路,具有高功率因数,控制方式简单新颖,元器件数量少,体积小,性价比高的优点。下文将详细介绍一个输出110V/60mA规格的高功率因数非隔离LED驱动电源。

电路原理图


图2.基于AP3766的高功率因数非隔离LED驱动电路原理图

图2中F1为保险丝,VR1为防雷保护压敏电阻,C1,L1,C2组成π型EMI滤波器。C3,C4,D2,D3,D4构成一个逐流式电路实现功率因数校正功能。逐流式电路提高整流电路功率因数的原理在于增大了整流电路的导通角,在输入交流电压大于峰值电压一半时,整流桥BD1就能导通,避免了传统不控整流电路只在交流电压峰值附近才能瞬间导通导致大的电流尖峰和波形畸变问题,从而降低了总谐波失真度,即THD。

经过逐流式电路后,由L1,L2,Q1,D1,C9构成的Buck-boost开关电源电路完成升降压和恒流输出功能,控制芯片U1实现Buck-boost开关电源电路的开关控制功能。电感L1,L2,L3通过磁芯T1相互耦合。

采用原边开关控制方式的Buck-boost开关电源电路工作原理是:设定在一个开关周期内,输出二极管D1的导通时间为Tons,关断时间为Toffs,输出电流峰值为Ipk,耦合电感L1绕组匝数N1,耦合电感L2绕组匝数N2。控制芯片U1控制开关占空比,保持输出二极管D1的导通时间Tons和关断时间Toffs比例恒定,则一个开关周期内,输出电流的平均值为:


图3为Buck-boost开关电源电路经过二极管D1的电流波形


图3二极管D1的电流波形

根据安培定理,输出二极管D1刚导通时输出电流峰值Ipks与开关Q1电流峰值Ipk有如下关系:


因此,输出电流的平均值为:


控制芯片U1通过检测原边开关电流,控制原边开关电流峰值Ipk恒定,同时控制开关占空比,保持输出二极管D1的导通时间Tons和关断时间Toffs比例恒定,实现了输出电流的恒定。

图2中,电阻R1,R9为芯片U1的启动电阻,连接到芯片的VCC脚,在电路上电后提供芯片一定大小的启动电流。L3为辅助绕组,与D5,C7构成芯片U1的供电回路。同时,L3辅助绕组电压经过电阻R6,R7分压,连接到芯片的FB脚,作为输出电压的检测和保护电路。R2为开关Q1的电流检测电阻,连接到芯片的CS脚,即U1的电流采样脚。芯片U1的2脚GND连接到地电位,1脚为输出驱动脚,输出一定脉宽的PWM信号,控制开关Q1的开通和关断。

图2中变压器T1采用EE16磁芯,有3个绕组,原边绕组L1电感量1mH,L1,L2和L3匝比为100:100:28。电路设计工作频率65KHz。

实验结果

基于以上电路设计,实验测试相关性能指标结果如下:


传导EMI测试结果如图4所示:


图4传导EMI测试结果

测试结果表明,在85V到265V宽输入电压范围下,该电路功率因数PF约为0.8,效率大于85%,满足EMI标准等LED驱动电源各项规格要求。

结论

本文提出一种基于AP3766的高功率因数非隔离LED驱动电源方案,控制方式简单新颖,实现了全电压范围内的高功率因数,高效率和恒流输出,具有元器件数量少,体积小,性价比高等突出优点,同时满足LED驱动电源的高功率因数,高效率,符合电磁兼容EMC标准,高电流控制精度,高可靠性、体积小、成本低等一系列要求。


 


鲜花

握手

雷人

路过

鸡蛋

QQ|关于本站|小黑屋|Archiver|手机版|无线电爱好网 ( 沪ICP备13030311号-1|申请链接 |人工智能  网站事务:点击这里给我发消息 技术支持:点击这里给我发消息 广告联系:点击这里给我发消息

GMT+8, 2013-12-6 08:59 , Processed in 0.105750 second(s), 43 queries .

Powered by Discuz! X3 Licensed

© 2001-2013 Comsenz Inc.

返回顶部